

Multi-Destination Routing and the Design of Peer-to-Peer Overlays

<u>Authors</u>

John Buford

Panasonic Princeton Lab, USA.

Alan Brown, Mario Kolberg University of Stirling, Scotland.

Problem Statement / Motivation

- Overlay Networks provide widely available end-to-end network services that would be difficult to deploy in physical networks.
- 2. O(1)-hop overlays have better latency characteristic than multi-hop overlays, but require more maintenance traffic.
- 3. Distributed Hash Tables (DHTs) are the basic indexing mechanism for large scale decentralized peer-to-peer systems.
 - How to obtain best performance in a large-scale wide area context for DHT operations is an important question.

Can we use multicast as a performance enhancement?

Why would we want to multicast?

- Chuang-Sirbu multicast scaling law says message savings are related to group size: 1 - m ^{-ε}, -0.34 < ε < -.2
- 5-way saves 28% to 42%, 10-way saves 37% to 54%

Why hasn't this been used already?

- All multicast protocols in Internet use host group model
 - Each group has unique group address
 - Each IP multicast router maintains routing state for each group
 - PIM-DM, PIM-SM, PIM-SSM, DVRMP, CBT
- Routers maintain per group state
 - Scales well for extremely large multicast groups
 - Scales poorly for large numbers of groups
 - Requires time to create group state throughout the network
 - Doesn't fit peer-to-peer overlay characteristics
- We propose to use multi-destination routing model
 - No state in routers, no time to create group needed
 - Scales well for large numbers of small groups
 - Group size is limited to about 50
 - Fits most cases of interest in parallelizing peer-to-peer overlays

ideas for life

Multi-Destination Routing

Example implementation : XCAST (Explicit multi-unicast)

Criteria for parallelization

- Criteria for determining whether overlay messages can be parallelized using multicast.
 - maximum group size
 - number of groups
 - time to create a new multicast group
 - group formation rate
 - temporal locality of messages
 - overlap of message content
- Multi-destination routing can be used in several categories of overlays for various overlay operations
 - DHT operations (Kademlia, EpiChord), overlay maintenance (EDRA*), replication (Beehive), and measurement (Meridian).
- Multicast savings for two overlay algorithms based on simulation results (EpiChord, EDRA*) are described in this paper.

When is multicast suitable for implementing overlay operations?

- Scalability of the multicast mechanism for number of groups and group size meets the scalability requirements of the overlay.
 - If C is the capacity of the network to support simultaneous multicast group state for this overlay, then $N_G \leq C$.
 - If v is the maximum group size supported by the network, then $|g_{max}| < v$.
- Overlay's rate r of group formation and group membership change must be sustainable by the multicast mechanism.
- Time to create a new multicast group $t_c < d_{q_i}$ the maximum allowed delay time in the peers outbound queue .

Results / Simulation

- To determine whether multi-destination routing is applicable to a number of different Overlay systems, we either simulated or modelled its application in:
 - EpiChord (simulation).
 - EDRA (simulation).
 - Kademlia (model).
 - Beehive, Meridian and Random Walk (models see paper).
- Simulations were carried out using a 10,450 node network in the SSFNet simulation environment. Overlay sizes varied from 1k to 9k nodes.

Simulation: EpiChord O(1)-hop overlay

- Routing table is organized in slices
- Slice density is highest in region near peer
- Each slice must have at least 2 entries
- DHT lookups and slice maintenance use parallel unicast requests
 - Failed responses are used iteratively to update routing table and narrow the search

Lookup intensive workload, 1K peers

EpiChord

S

Jnicast

Churn intensive workload, 9K peers

EpiChord Savings vs Chuang-Sirbu Multicast Scaling Law

Chuang-Sirbu:

Multicast savings = 1 - m ϵ , $-0.34 < \epsilon < -.2$, where m is multicast group size

- 5-way EpiChord actually sends 5-way, 2-way and unicast requests
 - Timeouts cause retries
 - NAKs cause additional queries
- 5-way EpiChord savings is about 30% for both edge and internal link
 - Consistent with Chuang-Sirbu for ϵ =-.3, based on combination of 2-way, 5-way
- Validated with Markov model

Simulation: EDRA (used in D1HT)

- EDRA (Event Detection and Recording Algorithm)
- Each peer collects join and leave events
- Propagates events to (log n) successors
- No peer receives duplicate events
- We fixed 6 problems with published EDRA algorithm and simulated

EDRA* - Improvements

EDRA* Technique	Summary
Explicit join inter∨al	Joining node gets e∨ents from node
	which provided copy of routing table
Correct join point	Successor node checks new
	predecessor is in correct position
Forwarding of un-	Events are forwarded to successors
acknoweldged e∨ents	of peer
Handling of duplicate	Forwards duplicate e∨ents that
e∨ents	occur due to routing table errors
Detecting concurrent	New nodes contact both successor
adjacent e∨ents	and predecessor nodes
E∨ent cache	E∨ents are cached and forwarded
propagation	as routing table changes reach to
	new nodes in o∨erlay

EDRA* vs EDRA*-XCAST

Overall savings about 33% for n = 1024

Kademlia

- Multi-hop overlay uses XOR as distance metric
- Bi-directional iterative lookups
- Node lookup
 - Sends parallel requests to peers.
 - Responses return closer nodes.
- Peer does at least k/α iterations for a node lookup in a given bucket (list of nodes a peer knows about, ordered by last seen). Each bucket covers a section of the ID space.
 - For k = 20 and α = 3, that is 3-way queries to seven multicast groups
 - With 160 buckets each peer would need at least 160 groups to do queries across its address space.
 - If the multicast queries were α -way, Chuang-Sirbu estimates a 20% to 30% savings.
 - If the queries were k-way, k=20, Chuang-Sirbu estimates a 45% to 64% savings from multicasting Kademlia requests, although responses would be unicasted.

Conclusion

- Parallelizing overlay operation using multi-destination is a generally applicable technique.
- Savings can be easily 30% or more for systems that were not explicitly designed to use multi-destination routing.
- Requires network support.

Questions?

Thank you for your time!

